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Abstract 

Frameworks or problem solving environments that 
support application development form an active area of 
research. The Multidisciplinary Optimization Branch at 
NASA Langley Research Center is investigating frame- 
works for supporting multidisciplinary analysis and 
optimization research. The Branch has generated a list 
of framework requirements, based on the experience 
gained from the Framework for Interdisciplinary Design 
Optimization project and the information acquired dur- 
ing a framework evaluation process. In this study, four 
existing frameworks are examined against these require- 
ments. The results of this examination suggest several 
topics for further framework research. 

Introduction 

Multidisciplinary design of aerospace systems is a 
complex, computationally intensive process that com- 
bines discipline analyses with design-space search and 
decision making. The decision making is based on engi- 
neering judgement but is greatly assisted by computer 
automation. Because the point of view, design empha- 
sis, and design approach of discipline specialists can be 
quite different, the practice has often been for each dis- 
cipline to be optimized independently, having limited 
direct interaction or communication with other disci- 
plines. The present aim of Multidisciplinary Design 
Optimization (MDO) is to meet the needs for increased 
interdisciplinary interaction and communication and for 
reduced design cycle time.’ 

The development of computational frameworks or 
problem solving environments offers the capability to 
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meet these needs via the use of sophisticated computa- 
tional procedures combined with state-of-the-art optimi- 
zation or design improvement techniques. Specifically, 
the development of computational frameworks to assist 
in rapid generation of “what-if’ scenarios with minimal 
programming effort would be a powerful aid to the 
designer in improving the results of the design process 
and in reducing the time and thus the costs. 

The Multidisciplinary Optimization Branch 
(MDOB) at NASA Langley Research Center (LaRC) 
recognizes the need for a framework that supports MDO 
applications-in particular, a framework that can sup- 
port the implementation and execution of MDO applica- 
tions and can provide a set of support services 
commonly needed in applications of this type. By hav- 
ing the framework support the integration of various 
processes of the MDO application, the designer would 
be able to concentrate more on the application and less 
on the programming details. The framework should 
automate the integration activities, thereby eliminating 
the hurdles otherwise present when transferring data 
among processes. In addition to development and exe- 
cution support, a framework could provide a common 
working environment, which would increase the pro- 
ductivity of multidisciplinary projects. 

The MDOB has participated in the development of 
the Framework for Interdisciplinary Design Optimiza- 
tion (FID0),2 sponsored by the High Performance Com- 
puting and Communication Program (HPCCP). The 
purpose of the FIDO project is to investigate the use of a 
distributed, heterogeneous computing system to facili- 
tate communications, apply computer automation, and 
introduce parallel computing to produce a truly multi- 
disciplinary process. This framework is intended to 
demonstrate technical feasibility and usefulness for 
selected applications and to provide a working environ- 
ment for use by LaRC researchers testing various opti- 
mization schemes. It automates the coordination of 
analyses by the various disciplines (each on its assigned 
computer) into an integrated optimization scheme, while 
allowing for visualization and steering by the designer. 

1 
American Institute of Aeronautics and Astronautics 



Increasingly complex multidisciplinary models of 
the High Speed Civil Transport (HSCT) have been 
implemented in FIDO. The framework was first demon- 
strated for a version of this design problem with fast, 
limited-fidelity discipline codes (equivalent plate struc- 
tural analysis, linearized aerodynamic analysis, propul- 
sion table lookup, and a simple range equation for 
performance fuel weight estimation), a geometry given 
by a set of points, a small number of design variables 
(on the order of ten), and a simple objective function. 
Recently the HSCT application has been demonstrated 
with medium-fidelity structural (coarse-grain, finite-ele- 
ment analysis) and aerodynamic (marching supersonic 
Euler) codes coupled in a static aeroelastic loop. A rede- 
signed HSCT application, now in progress, will provide 
the additional realism afforded by full nonlinear aerody- 
namic corrections, realistic finite-element analysis and 
weights estimation, full mission-cycle performance 
evaluation, and an actual, proposed HSCT geometry 
with realistic constraints, such as ground scrape. 

The major limitation with FIDO is that the system 
was implemented with the purpose of demonstrating a 
specific application-the HSCT design. As a conse- 
quence, the sequence of processes is hard coded, mak- 
ing it difficult to modify. The intertwining of the 
framework tools and the application formulation, cou- 
pled with a lack of documentation, has made FIDO inac- 
cessible for use by researchers who did not participate 
closely in its development. 

Although FIDO was not implemented as a generic 
framework for MDO applications, its development has 
provided much experience with the issues of framework 
architecture and problem formulation. Because of 
FIDO’s limitations described above and the amount of 
resources required to continue development and mainte- 
nance of a computational environment for MDO 
research, MDOB and HPCCP have been exploring alter- 
native frameworks. 

Within the past several years, MDOB and HPCCP 
conducted an evaluation process to investigate currently 
available frameworks. With the goal of developing a set 
of requirements for MDO frameworks, MDOB and 
HPCCP interacted with LaRC organizations and other 
government agencies involved in MDO research. Sev- 
eral candidate frameworks with the potential for sup- 
porting MDO research activities were identified.3 The 
evaluation process relied on written information and 
personal contact with the framework developers; the 
evaluation did not include hands-on testing of these 
frameworks. Framework evaluation efforts continue in 
MDOB. 

This paper provides conclusions made to date about 
the framework characteristics necessary for supporting 
MDO applications. First, the necessary framework 
requirements identified during the evaluation process 
are discussed. Next, a number of existing frameworks 
that appear to be relevant to MDO work are briefly 
described, and then several of these frameworks are 
described in more detai1.f Because some time has 
passed since the evaluation process previously 
described, the set of frameworks mentioned in this paper 
does not coincide exactly with the frameworks origi- 
nally investigated. The final section identifies some 
weaknesses found in current frameworks and suggests 
several topics for further research. 

MDO Framework Reauirements 

The purpose of a framework is to provide support 
for multidisciplinary design optimization application 
development and execution. This section lists a set of 
requirements for an ideal framework to be employed in 
LaRC’s MDO research. The requirements are presented 
from the following points of view: architectural design, 
problem formulation construction, problem execution, 
and information access. 

Architectural Desipn 

A framework should provide a Graphical User 
Interface (CUI) that is intuitive. The GUI should be 
designed such that the user can quickly learn to use the 
features of the framework effectively. Such a GUI 
would encourage the user to take advantage of the bene- 
fits offered by the framework. 

A framework should be designed using object-ori- 
ented principles. Object-oriented design4 has several 
advantages in MDO applications. For example, object- 
oriented principles allow switching of analysis or opti- 
mization methods at run time. In addition, object-ori- 
ented concepts extend naturally into distributed 
computing, which is moving in the direction of distrib- 
uted object technology. 

A framework should be extensible and should pro- 
vide support for developing the interfaces required to 
integrate newprocesses into the system. The user should 
be able to integrate new discipline codes, optimization 
methods, and other tools of interest into the framework. 

f The use of trademarks or names of manufacturers in this report is for 
accurate reporting and does not constitute an official endorsement, 
either expressed or implied, of such products or manufacturers by the 
National Aeronautics and Space Administration. 
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As a result, the user would avoid having to wait for the 
needed features to appear in new releases. 

A framework should not impose an unreasonable 
amount of overhead on the optimization process. Natu- 
rally, there will be some reduction in speed when the 
user is not fine-tuning the code. However, the frame- 
work should provide some performance measurements 
so that the user can identify time-consuming activities. 

A framework should be able to handle large prob- 
lem sizes. Currently, a framework should be able to sup- 
port problems with at least several hundred design 
variables. In the future, a framework should support 
problems with thousands of design variables. 

A framework should support collaborative design. 
MDO involves the expertise of multiple discipline 
designers. The designers need to be able to conveniently 
work together on the problem. A framework architec- 
ture that allows simultaneous access to the problem data 
by multiple users is desirable. 

A framework design should be based on standards. 
Examples of standards include message passing, data- 
base access, and languages. Use of standards preserves 
investment and results in lower maintenance costs. 

into the MDOproblem formulation. A major purpose of 
a framework is to support code reuse. In order for the 
framework to enhance productivity, users must be able 
to continue the use of familiar codes with no code 
changes required. The framework should provide tools 
for creating wrappers that would generate the appropri- 
ate input files, invoke the discipline programs, and auto- 
matically extract the output of interest. 

A framework should allow the user to integrate dis- 
cipline analyses with several optimization methods, 
including multilevel schemes involving suboptimiza- 
tions. Since no one optimization method is best for all 
problems, it is important that a framework support 
experimentation with different  method^.^,^ The user 
should be able to select a combination of optimization 
methods when defining the optimization problem. 

A framework should provide facilities for debug- 
ging of multiple processes executing on computers 
across a network. The framework should provide feed- 
back to the user when problems are not constructed 
properly. The user should be able to “step through” the 
application during execution, monitoring progress of 
several remote computations. 

Problem Execution 
Problem Formulation Construction 

A framework should allow the user to configure 
complex branching and iterative MDO problem formu- 
lations easily without low-level programming. By rais- 
ing the level of abstraction at which the user programs 
the MDO problem, problems could be constructed faster 
and be less prone to error. Ideally, a framework would 
provide a visual programming interface for connecting 
processes. 

A framework should allow the user to easily recon- 
figure existing MDO problem formulations. Problem 
formulation reconfiguration examples include replacing 
existing processes with new ones, deleting processes, or 
adding new processes to the application. Replacing pro- 
cesses with other processes may be desirable when 
experimenting with different levels of discipline fidel- 
ity. Adding/deleting processes may be desirable when 
adding or removing disciplines to the MDO problem. 
For example, the user may want to delete a process if it 
is no longer generating useful data. Fast reconfiguration 
supports the user in exploring alternative views of the 
problem without having to build the new problem from 
scratch. 

A framework should support the user in incorporat- 
ing legacy codes (written in a variety of languages) and 
proprietary codes (where the source is not available) 

A framework should automate the execution ofpro- 
cesses and the movement of data. In the traditional mode 
of multidisciplinary design, engineers wait to receive 
data from another discipline and then reformat it for 
input to their discipline. A framework should eliminate 
this delay by automating the preparation of input files, 
the execution of disciplines and optimization methods, 
the extraction of data from output files, and the transfer 
of data between processes. 

A framework should be able to execute multiple 
processes in parallel. For computationally intensive 
MDO problems, the user should be able to identify and 
take advantage of coarse-grain parallelism within the 
problem. For example, several discipline codes may be 
able to execute in parallel without affecting correctness 
of results. Furthermore, in the case of some multilevel 
optimization formulations, subsystem optimizations are 
able to proceed in parallel. 

A framework should support execution distributed 
across a network of heterogeneous computers. The user 
should be able to take advantage of resources on the net- 
work and of codes that have been optimized for certain 
hardware. 

A framework should support user interaction 
(steering) during the design cycle. Realistically, the user 
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needs to evaluate results as the execution progresses and 
adjust the problem as needed. For example, the user 
may want to substitute processes, disable execution of a 
process, or switch optimization methods. Also, the user 
may want to adjust the design variable and/or constraint 
sets. 

A framework should allow the user to operate in a 
batch mode. For productivity, the user needs to be able 
to define a problem or set of problems which can be 
executed one after the other without any manual inter- 
vention. For example, the user could take advantage of 
this capability to experiment with multiple starting 
points for an optimization problem. 

Information Access 

A framework should provide database management 
features. For larger problems, it is convenient to have a 
central database for maintaining data used by multiple 
disciplines. The user should have the option of defining 
which data are written to and read from the central data- 
base. 

A framework should provide the capability to visu- 
alize intermediate and j n a l  optimization and analysis 
results. Also, the user should be able to easily track his- 
tories of chosen design variables, behavior variables, 
constraints, and objective function values. These results 
should become available as soon as they are stored in 
the database and remain easily accessible after computa- 
tions are complete. 

A framework should provide a monitoring capabil- 
ity for viewing the status of an execution, including the 
system status. For example, a framework should provide 
visual feedback on which processes are currently exe- 
cuting. This feature would alert the user to potential 
problems in the system, such as failure of a computation 
to complete within a reasonable time. 

A framework should provide some mechanism for 
fault tolerance. For example, if the computer on which a 
process is executing fails, the user should be able to 
recover from an earlier automatic checkpoint with little 
or no loss of data. Even if no problems occur, the frame- 
work should provide a restart capability so that the user 
can begin a problem from a previous state. 

Research and Development in MDO Frameworks 

There is much activity in the area of frameworks 
and/or problem solving environments in government 
labs, industry, and universities. This section provides 
brief descriptions of those systems which seem most rel- 
evant to the authors. 

The following three existing commercial products 
provide optimization toolkit environments allowing the 
user to integrate analyses with optimization methods in 
a flexible manner. Each product provides GUI services 
for reviewing results of an optimization process. 

iSIGHT (Engineous Software, Inc.) - The SIGHT7 
product provides an optimization toolkit that allows 
a combination of optimization methods [numerical, 
heuristic, exploratory, design of experiments 
(DOE), and response-surface modeling (RSM)] to 
be applied to the MDO application. 

LMS Optimus (LMS Numerical Technologies) - 
LMS Optimus8 provides nonlinear programming 
optimization techniques as well as DOE and RSM 
methods. 

Pointer (Synaps, Inc.) - Pointer provides genetic, 
downhill simplex, and gradient optimization tech- 
niques. 

A noncommercial framework that provides an opti- 
mization toolkit capability is DAKOTA (Design Analy- 
sis Kit for OpTimizAtion), developed by Sandia 
National Laboratories. Sandia has used DAKOTA to 
implement applications on massively parallel 
ma~hines,~JO as well as on workstation clusters. 

Several multidisciplinary environments that focus 
less on providing an optimization toolkit and more on 
exploiting a distributed, heterogeneous computing envi- 
ronment are listed below. 

FIDO (NASA LaRC) - FID02 was developed to 
demonstrate distributed and parallel execution of a 
multidisciplinary analysis and optimization applica- 
tion using the HSCT as its example. The project is 
supported by HPCCP. 

NPSS [NASA Lewis Research Center (LeRC)] - 
NPSS" (Numerical Propulsion System Simula- 
tion), supported by HPCCP, enables multidisci- 
plinary design and analysis of engines. 

Access Manager (Boeing) - Access ManagerI2 sup- 
ports multidisciplinary analysis and design in a dis- 
tributed, heterogeneous computing environment. A 
key feature of this system allows the user to control 
the processes via a GUI. 

MIDAS (Jet Propulsion Laboratory) - MIDASI3 
(Multidisciplinary Integrated Design Assistant for 
Spacecraft) supports integration for multidisci- 
plinary analysis in a distributed, heterogeneous 
environment. 

MDICE-AE (CFD Research Corporation) - 
MDICE-AE (Multi-Disciplinary Computing Envi- 
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ronment for Aeroelasticity) supports aeroelastic 
analysis calculations. This framework is based on a 
distributed object model. 

Phoenix Integration, Inc. - For integrating multidis- 
ciplinary problems, this company is applying the 
concept of analysis servers that remotely host anal- 
ysis codes and client design tools that connect to the 
analysis servers. The servers provide tools for 
wrapping and error recovery. 

LAWE14 [High Technology Corporation (HTC)] - 
HTC promises a programming environment that 
will support development of large, distributed appli- 
cations using high-level communication objects. 
LAWE (Large Application Working Environment) 
will be composed of subsystems for communica- 
tions, visual programming, input and output dis- 
play, and system monitoring. It is being developed 
under a NASA Small Business Innovative Research 
contract. 

Some design tool products have a stronger focus on 
the data involved in the design. Below are a few exam- 
ples of these tools. 

AML (TechnoSoft, Inc.) - AML15 (Adaptive Mod- 
eling Language) employs a unified part model para- 
digm and a demand-driven calculation feature. 

IMAGE (Georgia Institute of Technology) - 
IMAGE16 (Intelligent Multidisciplinary Aircraft 
Generation Environment) is a research project of 
the Aerospace Engineering Department. A feature 
of this framework is the provision of object-ori- 
ented data management utilities for use during 
design processes. IMAGE also provides a distrib- 
uted computing capability. 

DARWIN (NASA Ames Research Center) - The 
Analytical Tools and Environments for Design 
program17 is developing information technologies 
for use in the design of aeronautical systems. As 
part of this effort, DARWIN18 (Developmental 
Aeronautics Revolutionizing Wind-tunnels with 
Intelligent systems for NASA) aims to reduce 
design cycle time by improving access to experi- 
mental data. 

Web technology appears to be ideal for achieving 
several of the framework requirements, such as facilitat- 
ing collaboration among researchers and access to infor- 
mation. The DARWIN framework is an example of a 
system using Web technology. Users access data by 
means of Web browsers; the data returned is generated 
by CGI (Common Gateway Interface) scripts and visu- 
alized via graphing Java§ applets. Another project 
exploring the use of Web technology was conducted by 

MDOB at NASA LaRC.19,20 This framework combines 
the use of a knowledge-based system for determining 
the processes ready for execution and Web technology 
for controlling processes, monitoring execution status, 
and visualizing problem data. 

Several research projects (e.g., Legion,21 Globus22) 
are focusing heavily on distributed computing technol- 
ogy and are tackling complex issues such as security, 
fault tolerance, and resource management. MDO is one 
of the application areas that will benefit from this 
research. 

MDO Frameworks 

This section describes in more detail four of the 
frameworks mentioned above that support MDO: FIDO, 
SIGHT, LMS Optimus, and DAKOTA. The amount of 
in-house experience obtained with FIDO warrants its 
description here. The evaluation process described in 
the “Introduction” section revealed the SIGHT and 
DAKOTA frameworks as two of the most relevant 
MDO frameworks available. Information acquired since 
the evaluation study reveals LMS Optimus to be another 
promising framework. 

The descriptions that follow identify some of the 
major features supported by each framework and some 
of the requirements, as discussed in a previous section, 
that the frameworks are known to support. Due to lack 
of information or lack of experience with a particular 
framework, not all requirements can be addressed for 
each one. 

FIDO 

The FIDO project was briefly discussed in the 
“Introduction” section. This section describes the FIDO 
features in more detail. 

Architectural Design. The FIDO architecture is 
modular. The framework is organized into distributed 
computational and service modules, which communi- 
cate through a communications library.23 There is a 
computational module for each discipline contributing 
to the application. The service modules, such as the 
GUI, Executive (control), Data Manager, Setup, and 
Spy, are intended to be application independent. 

The communications library contains functions 
designed to facilitate communications among a general 
system of computer codes executed in a heterogeneous, 
distributed network of computers. This library allows 
FIDO to be programmed without directly accessing the 

0 Java is a trademark of Sun Microsystems, Inc. 
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underlying, message-passing primitives and minimizes 
the impact on FIDO due to any changes in them. Cur- 
rently, the PVM (Parallel Virtual Machine) primitives24 
from the Oak Ridge National Laboratory are used. 

The GUI is limited to displaying the status of the 
execution. The Spy tool promotes collaboration among 
researchers by allowing access to Spy from multiple 
remote computers. 

Although object-oriented principles were not 
applied to FIDO, there was a strong emphasis on pro- 
ducing a modular system. As the complexity of the 
HSCT demonstration problem increased, more attention 
was given to defining discipline interfaces so that disci- 
plines with differing fidelity levels could be inter- 
changed. 

The development of persistent discipline drivers 
has increased execution efficiency. Persistent drivers 
allow data that are to be shared among related codes 
within a discipline to be conveniently held in memory. 
Timing routines inserted into the application allow the 
user to determine the amount of execution time for vari- 
ous parts of the computation. 

Problem Formulation Construction. A major limita- 
tion of FIDO is that it lacks support for building and 
reconfiguring MDO problem formulations at a higher 
level of abstraction than coding in the currently avail- 
able programming languages, such as FORTRAN and 
C. Some discipline codes used in FIDO are decades old 
and originally contained deeply embedded print and 
stop statements. These codes were modified to behave 
as library subroutines and are invoked from the appro- 
priate discipline driver. As a result, the discipline driver 
and the associated discipline codes are linked into one 
executable program. Overall, this is not a desirable 
approach because it involves extra work, duplicates 
maintenance tasks, and does not promote code reuse. 

Coordination of discipline analyses is provided by a 
problem-dependent Master module. Currently, the 
code for this module must be rewritten for each specific 
MDO application. For example, the initial focus appli- 
cation of the FIDO project has a 1 000-line C-code Mas- 
ter module to perform the complex iterative looping 
behavior required for even the simplified preliminary 
design of an HSCT. 

Only gradient-based optimization methods have 
been used within FIDO. In the early versions of FIDO, 
CONMIN25 was incorporated into the HSCT applica- 
tion. Later, the optimization module was modified to 
include KSOPT26 as an alternative to CONMIN. The 
user identifies the choice of optimizer by a data file 
parameter. 

The various modules were compiled with debug- 
ging options so that the code could be stepped through 
during execution. 

Problem Execution. The user designs the FIDO 
Master module so that the optimization and analysis 
processes are invoked and synchronized appropriately. 
The user provides the synchronization logic within the 
discipline drivers in the form of calls to the communica- 
tions library’s send and receive routines. 

The FIDO Setup module allows the user to choose 
the system configuration and the initial conditions and 
constraints of the optimization process from a range of 
previously defined possibilities. These are contained in 
four configuration files that define the data in standard- 
ized formats. 

All major data elements (individual items or file 
pointers) that are shared between modules are passed to, 
stored in, and retrieved from the central Data Manager. 
Using file pointers, data files are passed directly on 
request from the generating computer to the requesting 
computer. Because the communications library allows 
direct passing of data messages between the discipline 
computers, direct communication of messages can be 
implemented if the increased efficiency warrants it. 

The discipline drivers and their corresponding anal- 
yses are assigned to execute in parallel on different 
computers defined to be part of the PVM network. 
Because the discipline codes have short execution times, 
the parallelism exploited thus far in the FIDO HSCT 
applications is mainly in the calculation of derivatives 
using a finite-difference technique. 

From the beginning of its development, FIDO was 
designed to allow some interactivity during the design 
cycle. This feature is accomplished using the Spy tool, 
which allows the user to steer the process while the 
application is executing. By means of the Spy tool, the 
user may change current values of design variables, con- 
straints, and parameters. On the other hand, FIDO lacks 
a convenient way of setting up multiple problems that 
can execute one after the other. In particular, changing 
the initial conditions of a problem requires manually 
editing the input and configuration files. 

Information Access. The FIDO Data Manager 
allows storage and retrieval of data during problem exe- 
cution and is designed so that no additional coding is 
required for new problems. The user must define the 
data to be handled prior to execution. 

The FIDO Spy module allows the user to access 
and plot data from previous design cycles. The accessi- 
ble data includes information on the cycle status and 
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selected scalar and array data from each cycle. The data 
can be displayed as text or graphics. However, the data- 
base is not persistent, so FIDO must be running for data 
to be accessed. 

The FIDO GUI displays the state of the problem 
execution at all times. The GUI displays the problem 
formulation and uses color to indicate those processes 
that are starting up, executing, inactive, or shutting 
down. 

Although FIDO allows restart from a completed 
optimization cycle, it provides no other fault-tolerance 
capability. However, a restart requires some data file 
preparation. 

SIGHT 

The iSIGHT framework is a generic shell environ- 
ment for supporting multidisciplinary optimization. A 
key feature of iSIGHT is the ability to combine numeric, 
exploratory, and heuristic methods during an optimiza- 
tion. 

Architectural Design. The SIGHT environment 
consists of several modules including an interpreter, 
toolkits, and GUIs. The T c ~ ~ ~  language is the interpreter 
that provides the “glue” for integrating various pro- 
cesses. GUI services are provided for connecting pro- 
cesses, defining the optimization plan, and monitoring 
results. 

GUI services are provided for wrapping discipline 
codes. In addition, the user may integrate additional 
optimization techniques into SIGHT. However, the 
SIGHT Application Programming Interface (API) must 
be used to create the appropriate interface between the 
optimizer and the framework. In addition, a Tcl com- 
mand must be created for the optimization technique. 

Problem Formulation Construction. The SIGHT 
framework provides the user with both a GUI, in which 
modules are represented by icons, and the Multidisci- 
plinary Optimization Language (MDOL) for construct- 
ing MDO problems.28 Use of the GUI to define the 
problem generates the appropriate MDOL file, referred 
to as a description file. MDOL has a block structure 
style and English-like language constructs. 

The GUI provides the user with building blocks 
representing discipline codes and calculation blocks that 
may be needed in addition to the discipline codes. The 
user may define the input, output, and execution invoca- 
tion of the discipline code blocks, as well as the arith- 
metic expressions for the calculations blocks. However, 
within the GUI, the user is limited to defining a sequen- 
tial order for the disciplines and calculations. If the 

problem logic requires branching or iteration, the user 
must express this logic through a combination of Tcl 
and either MDOL or SIGHT APIs in the description 
file. Modification to the problem formulation requires 
modification of the description file. 

The SIGHT framework allows users to construct 
MDO applications using existing discipline codes with- 
out modifications by interactively generating a code 
wrapper. Parsing utilities create the appropriate input 
files and extract the appropriate data from discipline 
output files. Using the GUI and the input and output file 
templates for a discipline code, the user can generate the 
appropriate file parsing commands. As a result, the user 
is able to integrate legacy and proprietary codes into the 
MDO problem. 

Optimization techniques in iSIGHT include numer- 
ical, exploratory, expert system, and response surface 
method~logies .~~ The techniques or combination of 
techniques, as well as the design variables, constraints, 
and objective function, can be defined via the GUI or 
the MDOL description file. 

Problem Execution. The SIGHT framework auto- 
mates the execution of the various discipline codes and 
calculation blocks, the handling of the data, and the 
adjustment of design variables during optimization. The 
computational processes defined in the problem formu- 
lation are executed sequentially, because SIGHT pro- 
vides no support for parallelism. There is very limited 
support for distributed computation. For example, a dis- 
cipline code may initiate a remote process; however, all 
description codes for a problem must reside in the same 
directory on a single computer. 

Interactive features30 in SIGHT provide the capa- 
bility to pause the execution and continue it later. The 
user can stop the execution to modify the optimization 
methods, design variables, constraints, and objective 
function. Upon restart, the execution resumes from the 
best design point of the previous optimization. Disci- 
pline codes can be switched only if the appropriate logic 
is present in the description file. 

Information Access. The SIGHT framework lacks 
a database capability other than the data management 
toolkit that keeps a history of the design states. There- 
fore, data sharing among several discipline codes has to 
be accomplished by writing and parsing files. 

A monitoring capability is provided that can be 
applied at any time during execution.30 Input and output 
values can be monitored in tabular or graphical form. In 
addition, the user can review the data from a completed 
optimization and can restart the optimization process 
from a design point previously computed. The GUI also 
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indicates which process in a task is running by changing 
the appearance of the module icon. 

LMS ODtimus 

Another framework for multidisciplinary optimiza- 
tion, LMS Optimus, allows a user to set up a problem, 
select a method to be used with the problem, and ana- 
lyze the results.31 Features of LMS Optimus provide 
nonlinear programming (NLP), DOE, and RSM tech- 
niques for optimization. 

Architectural Design. The Optimus Kernel module 
contains the GUI, which provides features for construct- 
ing the analysis sequence and design problem and for 
analyzing the results. The GUI is written using the C++ 
language and Motif7. The user can include any analysis 
code as part of an MDO application as long as the 
design input and output can be identified in the input/ 
output files. 

Two optimization modules are provided in LMS 
Optimus: the DOE/RSM module and the NLP module. 
A recently available feature allows the integration of an 
external optimizer. All that is required for integration of 
an optimizer is that it writes the adjusted design vari- 
ables to a file and reads the analysis results from a file. 

Due to internal array sizes, the maximum number 
of design variables allowed is 50; the maximum number 
of design outputs allowed is 200. 

Problem Formulation Construction. The user 
employs the LMS Optimus GUI to define the analysis 
sequence. Through the GUI, the user identifies the anal- 
yses and their corresponding input and output files. In 
addition, the files associated with the design data input 
and output are identified. Actions taken through the GUI 
result in the creation of a command file. The command 
file contains sections for defining design inputs, design 
outputs, discipline input and output file parsing com- 
mands, analysis sequencing, and optimization method 
selection. The sequencing commands include @hen/ 
else andfor control statements. The GUI generates only 
a subset of commands that can be included in the com- 
mand file; the user can edit the command file to include 
additional commands. 

The LMS Optimus user can include legacy and pro- 
prietary codes in the analysis sequence without making 
any modifications. The GUI can be used to identify the 
design data in the input files; before each analysis is 
executed, the input files are automatically constructed 
by the framework to include appropriate input. Simi- 

7 Motif is a registered trademark of Open Software Foundation, Ltd. 

larly, the user identifies, via the GUI, the output to be 
extracted from the output file; after the analysis com- 
pletes execution, the data is automatically extracted. 

Once the analysis is defined, the user can select 
either a user-defined table of experiments, an NLP 
method, or a DOE/RSM method to be integrated with 
the analysis. The NLP methods available include 
sequential quadratic programming and generalized 
reduced gradients. The results from a DOE method can 
be used to form an RSM. The RSM may then be used in 
place of the full analysis during an optimization. 

Problem Execution. The Optimus Kernel automates 
the execution of the various discipline codes included in 
the analysis, manages the input and output data, and 
adjusts the design variables. The processes defined in 
the analysis are executed sequentially. For distributed 
computing support, the command language includes a 
command for executing a remote process. 

Information Access. The results from a completed 
NLP or DOE method can be loaded by the GUI and 
postprocessed. The results of an optimization can be dis- 
played in a tabular format. Several options exist for 
visually analyzing an RSM. 

DAKOTA 

The DAKOTA design provides a flexible and 
extensible interface between analysis codes and itera- 
tion methods. Methods are included for optimization, 
uncertainty quantification, parameter estimation, and 
sensitivity analysis. 

Architectural Design. The DAKOTA design is 
based on object-oriented principles and is implemented 
with the C++ language. The definition of generic inter- 
faces between optimization methods and analysis codes 
hides the specifics of each. Use of these interfaces and 
object-oriented language features promotes the “plug 
and play” capability. 

Problem Formulation Construction. To define the 
MDO application, the user must create a file that speci- 
fies information about interfaces, variables, responses, 
strategies, and methods.32 In DAKOTA, “strategies” 
manage methods and “interfaces” provide access to the 
discipline codes, which map the variables to the 
responses . 

Several types of interfaces are defined in 
DAKOTA, the primary being the application interface. 
The application interface allows discipline codes to be 
accessed through either system calls or direct function 
calls. The direct function call interface requires convert- 
ing main programs to function calls and linking the 
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functions into the DAKOTA executable. The system 
call interface allows access to external programs; com- 
munication between the external program and 
DAKOTA is accomplish via files. 

The interface section of the specification file must 
include the name of the analysis (or analysis driver), and 
if required, the names for the input and output filters 
(Le. pre- and post-processors). Note that only one analy- 
sis driver may be specified; however, an entire MDO 
application, developed outside of DAKOTA, along with 
an input and an output filter, can be accessed through 
these three names. The input filter must use the design 
parameter list provided by DAKOTA to prepare the 
input for the analysis driver. Also, the output filter must 
retrieve data from the analysis driver and prepare the 
response and sensitivity data in the format required for 
use by DAKOTA. 

A variety of optimization methods are provided, 
including NLP and genetic algorithms. The DAKOTA 
strategies manage multiple methods, disciplines, and 
approximations. The strategies include single, multilevel 
hybrid, and sequential approximate optimization. The 
single strategy allows a single method to be used with a 
single discipline. The multilevel hybrid strategy allows 
multiple methods to be used in succession with a disci- 
pline. This strategy uses the best solution from one 
method as the starting point for the next method. The 
switching criteria used can either be based on an indi- 
vidual method’s convergence criteria or an adaptive 
technique that employs method performance metrics. 
The sequential approximate optimization strategy uses 
both a discipline and an approximation of the discipline. 
The approximation model is optimized, and the disci- 
pline model is evaluated at the approximate optimal 
solution. These results are used to update the approxi- 
mation. 

Problem Execution. Both the execution of the anal- 
ysis driver and input/output filters and the transfer of 
data between these and the optimization methods are 
automated by DAKOTA. Distributed computing is sup- 
ported using MPI message passing on workstation clus- 
ters and on massively parallel supercomputers. The 
asynchronous function evaluation command option 
allows concurrent analysis calculations and is available 
with both system call and direct function interfaces. 
This feature can be used when calculating derivatives 
using finite differences or when using the parallel algo- 
rithms provided in DAKOTA. 

Information Access. There is an option for the user 
to specify creation of a restart log. Also, several options 
are available for handling application failure recovery. 

Concludin? Remarks 

At LaRC, MDOB has gained experience in the 
development and use of frameworks that support MDO 
research. Framework evaluation and FIDO research 
activities in MDOB have generated a set of framework 
requirements. The FIDO, SIGHT, LMS Optimus, and 
DAKOTA frameworks have been examined against 
these requirements. 

None of the frameworks address all of the require- 
ments; each has its strengths and weaknesses. Several 
major areas for future framework research include sup- 
port for problem construction, distributed and parallel 
computing, database management, debugging, and 
designer interactivity. The least support in problem for- 
mulation construction is provided by FIDO. In the other 
three frameworks, support that allows existing codes to 
be integrated without modification typically is available 
via parsing tools and system calls. The LMS Optimus 
and iSIGHT frameworks provide visual programming 
support for simple formulations. 

Although more database management, distributed 
and parallel computing capabilities are available in 
FIDO than in the others, the user must program at a low 
level to exploit these features. DAKOTA has more par- 
allel and distributed capability than SIGHT and LMS 
Optimus. Central database capabilities are not available 
in SIGHT, in LMS Optimus, nor in DAKOTA. Visual- 
ization of optimization results is available during execu- 
tion within FIDO and iSIGHT but only after execution 
within LMS Optimus. 

Although FIDO does not meet all of the require- 
ments discussed, the general architecture of the frame- 
work has proven its worth. The complex design 
processes that have been implemented in FIDO reveal 
the benefits of FIDO features, such as the Spy tool for 
promoting collaboration and design steering, the persis- 
tent discipline drivers for promoting efficiency, and the 
Database Manager for promoting data sharing. 

Except for FIDO, LaRC’s MDOB has more experi- 
ence using SIGHT than the other frameworks, having 
used it to implement an early version of the HSCT 
application. Based on this experience, it was decided 
that SIGHT was not yet ready for use on the very com- 
plex, distributed, high-fidelity HSCT application cur- 
rently being designed. A new version of SIGHT, which 
is scheduled for release in the Fall of 1998, will provide 
distributed computing and debugging capabilities. 

The LMS Optimus framework is currently being 
extended to provide parallel capability for scheduling 
DOE and NLP across networks of computers. A new 
version of DAKOTA has a capability for multilevel par- 
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allelism, in which several multiprocessor simulations 
are coordinated sim~ltaneously.~~ 

Because the frameworks examined do not yet pro- 
vide the functionality necessary for implementing the 
complex problems required under HPCCP, development 
of a follow-on to FID034 is proceeding. A major change 
in implementation is the use of a commercial CORBA- 
compliant system35 instead of PVM to provide commu- 
nications for distributed computation. CORBA is 
becoming accepted as the standard for distributed object 
technology. The wrapping of legacy code into Java 
modules (called “Java Beans”) will promote flexibility 
in the construction of the problem by using Java visual 
programming packages. In addition, a commercial data- 
base will be used to promote data sharing among disci- 
plines and provide access to persistent data. The 
redesigned framework will be used to implement an 
HSCT application that contains high-fidelity aerody- 
namics and structures codes, along with FLOPS36 
(Flight Optimization System) for the performance anal- 
y ~ i s . ~ ~  This version of the HSCT problem increases the 
number of design variables to approximately two hun- 
dred. 
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